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↑What is “already known” in this topic: 
DBS is effective for motor symptom control in PD, but predicting 
individual clinical outcomes remains challenging.   
 
→What this article adds: 

This systematic review summarizes machine learning-based 
classification and early predictive modeling studies in DBS for PD, 
while highlighting current limitations and the need for external 
validation.  
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Abstract 
    Background: Parkinson's disease (PD) is a degenerative condition of the nervous system that is primarily characterized by a gradual 
decline of motor function. For patients with suboptimal response to medical treatment, deep brain stimulation (DBS) is a well-
recognized surgical approach. This systematic review evaluates the performance of machine learning (ML) models in classifying 
patients or symptoms or to predict postoperative outcomes following DBS in PD. 
   Methods: PubMed, Scopus, Cochrane, Embase, and Web of Science were searched in accordance with PRISMA through December 
31, 2024. We included original human studies of DBS-treated PD in which ML used clinical (non-imaging) features to classify patients 
or symptoms, or to predict postoperative outcomes. Cohort, cross-sectional, and case-series designs were eligible. Imaging-based 
prediction studies were excluded. 
   Results: From 961 records, eight studies (n=555 patients) met the inclusion criteria. Three studies performed preoperative-to-
postoperative outcome prediction, and five focused on symptom or patient classification. Targets included motor severity, speech 
outcomes, and gait-related measures. The Support Vector Machine (SVM) was the most frequently applied ML model, followed by the 
k-nearest neighbor, which was used in three studies. Commonly used assessment tools included the Mini-Mental State Examination 
(MMSE), the Hoehn and Yahr Scale, and the Unified Parkinson's Disease Rating Scale (UPDRS). 
   Conclusion: This review highlights early but exploratory application of ML for patients' or symptoms classification and predicting 
clinical outcomes and adverse events following DBS using preoperative clinical data. However, the current evidence is sparse, single-
center, and methodologically heterogeneous, with limited external validation. Therefore, clinical translation remains premature.    
 
Keywords: Deep Brain Stimulation, Machine Learning, Parkinson's Disease, Artificial Intelligence, Motor symptoms 
 
Conflicts of Interest: None declared 
Funding: None 
 
*This work has been published under CC BY-NC-SA 4.0 license. 
  Copyright© Iran University of Medical Sciences  
 
Cite this article as: Javadnia P, Rohani M, Amini E, Yousefi M, Jafarabadi Ashtiani A, Rohani S, Farzi A. The Application of Machine Learning to 
Predict Clinical Outcomes of Deep Brain Stimulation in Parkinson's Disease: A Systematic Review. Med J Islam Repub Iran. 2025 (26 Dec);39:164. 
https://doi.org/10.47176/mjiri.39.164  
 
 

Introduction 
PD is a neurodegenerative disorder impacting nearly 1% 

of people worldwide who are aged 60 years or older (1). 
PD manifests with motor and non-motor symptoms, in-
cluding tremor, bradykinesia, rigidity, depression, and 
cognitive decline (2, 3). Being affected by these symp-
toms significantly lowers the individual's quality of life 
over time and disease progression (4). First-line treatment 

is medical therapy in almost all patients. However, poor 
medication response can lead patients to surgical ap-
proaches to control their symptoms and increase their in-
dependence (5). DBS is a widely adopted surgical tech-
nique used in PD patients to help control their symptoms 
(6). The operation is performed by implanting electrodes 
into specific brain areas responsible for movement con-
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trol; these areas include the subthalamic nucleus (STN), 
globus pallidus internus (GPI), and ventral intermediate 
nucleus (VIN) (7, 8). Despite the benefits DBS offers, it 
can also lead to unwanted outcomes, especially due to 
unintended stimulation of nearby brain regions. Therefore 
some patients do not receive much benefit from this ap-
proach (8).  

Although a considerable number of studies have at-
tempted to identify factors that predict treatment success, 
clinicians still struggle to forecast which patients will ben-
efit most (7, 8). One reason is that DBS effects depend on 
very small differences in electrode position, while elec-
trode localization and image registration can introduce 
meaningful uncertainty, which makes reliable prediction 
harder (9, 10). In addition, patients do not respond in the 
same way, outcomes can vary widely across individuals, 
and factors such as clinical and genetic subtypes may con-
tribute to this heterogeneity (11, 12). Results also differ 
across centers because practices vary in patient selection, 
target choice, surgical approach, and postoperative man-
agement, which limits how well prediction models gener-
alize (13). Furthermore, studies often use different end-
points and responder definitions, and even common clini-
cal tests like the levodopa challenge do not always predict 
DBS benefits well when evaluated in broader datasets (14-
16). Therefore, the development of improved methods for 
patient selection is critically needed. 

Although DBS is an effective way for controlling motor 
symptoms, predicting individualized outcomes is still a 
significant challenge.  

Conventional statistical techniques, such as logistic re-
gression, are commonly used for DBS outcome modeling, 
but they can fall short when relationships between varia-
bles are complex and non-linear across patients.  

Recent work has explored a range of ML-based model-
ing strategies using preoperative clinical and neuropsy-
chological features. As an example, Habets et al. (17) de-
veloped a multivariable logistic regression model to iden-
tify weak responders one year after STN-DBS. While 
promising, the evidence remains limited and requires ex-
ternal validation. This study suggests that ML-based ap-
proaches may offer added value for DBS outcomes pre-
diction compared with conventional models, although 
evidence is still limited and model performance is not 
consistently validated across independent cohorts.  

Beyond routine clinical assessments, non-imaging data 
sources such as intraoperative microelectrode recordings 
and wearable or sensor-derived features have been ex-
plored in ML studies in PD and DBS research. Park et al. 
(18), for instance, used deep learning on intraoperative 
microelectrode recordings to model DBS-related clinical 
outcomes. Similar non-imaging directions have also been 
explored using intraoperative recordings and wearable or 
sensor-derived features, although endpoints and evalua-
tion vary across studies (19-21). 

In this context, various recent studies have investigated 
the application of ML techniques to predict clinical out-
comes of DBS in patients with PD (7, 17, 19). ML, a sub-
field of artificial intelligence (AI), identifies patterns in 
complex datasets to generate predictive insights (22). In 

DBS interventions, ML can be employed to model associ-
ations between preoperative clinical variables and treat-
ment efficacy (7, 22). The approaches in ML are mainly 
grouped into supervised, unsupervised, semi-supervised, 
and reinforcement learning. Within the framework of su-
pervised learning, commonly applied predictive tech-
niques include Logistic Regression, Naive Bayes, Random 
Forest (23), SVM, Neural Network, Deep Neural Net-
work, and Decision Tree. Supervised learning predicts the 
outcome using labeled datasets, whereas unsupervised 
learning extracts patterns from unlabeled input variables. 
Comparing the statistical parameters of different ML 
models can help identify the efficiency of each model in 
clinical practice applications (22). 

To date, few reviews have specifically focused on ML 
models that use clinical and non-imaging predictors of 
DBS outcomes in PD, and prior work has typically been 
narrative in scope with limited formal quality assessment. 
Therefore, this study aims to synthesize studies that ap-
plied machine learning to either classify symptoms or pa-
tient subgroups in DBS-treated PD cohorts, predict post-
operative clinical outcomes using preoperative clinical 
and non-imaging features.  

 
 Methods 
The design and reporting of this research were conduct-

ed in full compliance with the PRISMA 2020 guidelines 
for systematic reviews and meta-analysis to uphold high 
standards of transparency and methodological soundness. 

Literature Search Plan and Data Sources 
A structured and comprehensive search of the existing 

scientific literature was carried out across five electronic 
databases: PubMed, Scopus, Cochrane, Embase, and Web 
of Science. The search strategy utilized a mix of key-
words, MeSH terms, and Boolean operators (AND, OR) 
related to "artificial intelligence," "machine learning," 
"Parkinson's disease," "idiopathic Parkinson's disease," 
"deep brain stimulation," and "DBS." All records included 
from database inception through December 31, 2024, were 
considered without restrictions on publication date. An 
independent screening of the reference lists from eligible 
records was conducted to find any potentially relevant 
papers missed in the initial search.  

 
Study selection 
For study selection, all identified citations were trans-

ferred into EndNote version 20 to facilitate organized ref-
erence handling. After removing duplicate entries, two 
independent reviewers separately screened the titles and 
abstracts during the initial evaluation process. Following 
this, the full texts of the articles were assessed according 
to previously defined eligibility criteria. Disagreements 
were addressed by a third reviewer.  

 
Eligibility criteria 
Eligibility was limited to English-language primary 

studies involving human subjects diagnosed with idio-
pathic PD who had undergone DBS. ML algorithms were 
applied using clinical, neurophysiological, wearable, or 
sensor-derived features to either classify patients or symp-
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toms in DBS-treated PD cohorts or model postoperative 
outcomes. We required that participants had undergone 
DBS, but did not restrict analysis to strictly preoperative 
measurements when the ML task involved clinically rele-
vant classification in DBS-treated populations. Eligible 
study designs included cohort studies, cross-sectional 
studies, and case series. We also included studies that used 
ML to predict postoperative adverse outcomes.  

The excluded studies were non-English publications, 
studies on animal models, studies with fewer than four 
subjects, case reports, review articles, letters to the editor, 
and commentaries. Additionally, studies that included 
patients with PD without a confirmed diagnosis of idio-
pathic PD or those who did not receive DBS were exclud-
ed. Furthermore, studies in which ML models used imag-
ing data instead of clinical symptoms as predictive varia-
bles were also excluded. 

 
Data extraction 
Two independent reviewers extracted and aligned data 

from the included studies, organizing the information into 
structured Excel documents. The dataset consisted of the 
author's name, study population size, demographic fea-
tures (age and sex), country of origin, preoperative clinical 
symptoms used for prediction, assessment tools, ML sub-
types, predicted postoperative symptoms, and outcome. 

 
Quality Assessment 
The studies included were evaluated for their methodo-

logical quality with the help of the Quality Assessment of 
Diagnostic Accuracy Studies-2 (QUADAS-2) tool. The 
QUADAS-2 instrument evaluates potential risk of bias 
across four areas: participant selection, assessment of the 
index test, appraisal of the reference standard, and the 
management of study flow and timing. It also considers 
concerns regarding applicability (24). Two reviewers in-
dependently assessed each study, and disagreements were 
resolved by discussion with a third reviewer. Given that 
QUADAS-2 was specifically created for diagnostic test 
accuracy studies, we utilized it here as a structured 
framework to summarize key sources of bias. Findings 
were interpreted cautiously in light of the specific chal-
lenges of ML-based modeling studies. We acknowledge 
that tools such as PROBAST have been specifically de-
veloped for assessing prediction model studies. However, 
due to incomplete reporting and heterogeneous study de-
signs, a full PROBAST assessment was not feasible. 
QUADAS-2 was therefore used as a pragmatic framework 
to summarize major sources of bias, and all interpretations 
were made cautiously in light of ML-specific limitations.     

 
Results 
Selection of Studies 
The process of selecting studies, following the PRISMA 

2020 guidelines, is depicted in Figure 1. A total of 961 
citations were retrieved from electronic database searches. 
Following the elimination of 307 duplicate entries, the 
remaining studies were screened using their titles and ab-
stracts. Following the screening process, eight studies met 

all the inclusion criteria and were selected for the final 
analysis. 

 
Characteristics of the Studies 
The combined study population consisted of 555 pa-

tients diagnosed with PD. Table 1 presents an overview of 
the main features of the selected studies. The UPDRS was 
the most frequently used assessment tool, used in 5 stud-
ies. The predicted outcomes varied across the studies and 
included motor symptoms (three studies) and speech and 
gait impairment (two separate studies). Among the ML 
methods utilized, SVM was the most common, applied in 
four studies out of the eight, followed by the k-nearest 
neighbor algorithm used in 3 studies. 

 
Risk of Bias and Relevance Evaluation 
The results of the QUADAS-2 evaluation are shown in 

Figures 2 and 3. The most frequent risk of bias was in the 
index test domain, followed by patient selection, where 
methodological details were often inadequately described 
or justified. One study showed high applicability concerns 
in the patient selection domain, while the remaining stud-
ies demonstrated no major issues. These findings guided 
our interpretation of the evidence and highlighted meth-
odological weaknesses that challenge the generalizability 
of the results.  

The bar chart displays how the included studies were 
rated for risk of bias and applicability (high/red, un-
clear/yellow, and low/green) across the four domains of 
the QUADAS-2 framework: patient selection, index test, 
reference standard, and study flow and timing 

Each domain is evaluated for risk of bias and applicabil-
ity in the eight included studies. Color coding reflects risk 
status: green for minimal concern, yellow for intermediate 
or uncertain concern, and red for elevated concern.   

For clarity, we first distinguish between cross-sectional 
classification tasks and longitudinal prediction of postop-
erative outcomes. Within each category, results are orga-
nized by clinical domain (motor, speech, gait, and cogni-
tion). Studies by Angeles et al (20), Yohanandan et al. 
(21), Suppa et al. (25), Watt et al. (26), and Sabo et al. 
(27) are symptom and patient classification studies. Fur-
thermore, studies by Alhourani et al. (28), Habets et al. 
(17), and Chang et al. (29) are postoperative outcome pre-
diction studies.  

 
Synthesized Findings 
Because of substantial methodological variability across 

the included studies, including differences in ML algo-
rithms, input features such as clinical and wearable data, 
outcome measures, and performance metrics such as accu-
racy, sensitivity, and specificity, F1 score, and k, a quanti-
tative meta-analysis was not feasible. Instead, we adopted 
a structured approach. Findings were organized by out-
come domains, namely motor symptoms, speech and 
voice, verbal fluency, gait, and cognitive outcomes. With-
in each domain, we systematically described the type of 
input variables, ML models applied, and the main predic-
tive performance reported in the studies. This resulted in a 
clear and organized summary of the evidence, while ac-
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knowledging the heterogeneity and limitations of the 
available data. 

 
Motor symptoms 
Two studies explored the use of wearable device sensor 

data to predict motor symptom severity using standardized 
clinical scales such as the UPDRS and the Bain-Findley 
Tremor Rating Scale (BTRS). Angeles et al. (20) exam-
ined 13 PD patients who underwent DBS and three 
healthy controls using wearable devices placed on their 
more affected arms. The sensor data were processed to 
calculate the UPDRS scores. After that, the correlation 
was assessed using different types of ML (Simple trees, 
linear SVM, and fine k-nearest neighbors (KNN)) with 
clinician feedback. The fine KNN model achieved very 
high accuracies across rigidity and bradykinesia subscores 
(up to 100% for elbow rigidity), while linear SVM per-
formed best for postural tremor (82.9%).  

In a related study, Yohanandan et al. (21) used the 
BTRS rather than the UPDRS for tremor evaluation. They 
found that random forest ML classifiers achieved the 

highest agreement with clinical scores (κw = 0.81). These 
findings suggest that ML models may, in principle, ap-
proximate clinician-rated motor scores from wearable 
sensors, but the evidence remains strictly exploratory, 
with no external validation and considerable risk of over-
fitting. In another study, a logistic regression model was 
developed to identify weak responders to STN-DBS using 
preoperative variables in addition to neuropsychological 
variables. The model achieved a diagnostic accuracy of 
78%, and high UPDRS scores in the on-medication state 
emerged as the strongest predictor of post-DBS outcomes 
(17). 

 
Speech and verbal fluency 
Alhourani et al. (28) applied ML techniques to identify 

neuropsychological predictors of postoperative verbal 
fluency decline in a cohort of 90 PD patients who under-
went DBS. Among various linear and non-linear algo-
rithms, support vector regression (SVR) and the least ab-
solute shrinkage and selection operator were the most ef-
fective. Additionally, it was shown that greater deficits in 

 
Figure 1. Diagrammatic representation of the literature selection workflow guided by the PRISMA 2020 guidelines. 
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the frontal system, older age, higher scores on the impul-
sive-compulsive disorder questionnaire, longer disease 
duration, and increased behavioral difficulties were related 
to a more serious risk of verbal fluency problem following 
DBS. 

In another study, Suppa et al. (25) used ML models to 
compare voice impairment severity between 50 DBS-
treated PD patients and 51 patients treated with oral medi-
cation. They used UPDRS-III scores and ML-based voice 
analysis for their assessment. The study reported that pa-
tients with STN-DBS exhibited greater voice impairment, 
and the SVM model could successfully distinguish be-
tween the voice profiles of the DBS and medication 

groups with high accuracy. 
 
Gait impairment 
Watts et al. (26) examined 21 individuals diagnosed 

with idiopathic PD who received bilateral STN-DBS ther-
apy and had gait impairment defined by a score of 2 or 3 
on the MDS-UPDRS gait component. The study em-
ployed wearable sensors and applied various ML models 
(KNN, random forest, logistic regression, Naive Bayes, 
and SVM) to distinguish between patients who exhibited 
freezing of gait, known as freezers, and those who did not 
have freezing of gait, known as non-freezers. All models 

Table 1. A Summary of the Studies Included Evaluating Machine Learning Models to Predict Clinical Outcomes After Deep Brain Stimulation in 
Parkinson’s Disease 
Author (year) Predicted symptoms ML type and measurement meth-

od 
Results 

Alhourani et al. 
(2022) 

Post-op Verbal fluency by 
preoperative cognition 

ML type: SVR, LASSO, extra-
trees, KNN, ordinary least 

squares; Measurement method: 
DKEF, Digit span, QUIP 

-Greater scores in pre-surgical fluency, digit span, education, 
and MMSE are predictors of higher post-op verbal fluency 

score 
-higher frontal system deficit scores, older age, elevated 

impulsive-compulsive disorder questionnaire scores, disease 
duration, and behavioral inhibitory are predictors of lower 

post-op verbal fluency scores 
Angeles et al. (2017) Bradykinesia, rigidity, 

tremor 
ML type: Supervision machine 
learning (simple decision tree, 
linear SVM, fine KNN; Meas-

urement method: UPDRS, senso-
ry system attached to arm 

-ML, by using data recorded by a sensor system, with 90.9% 
accuracy, could predict the clinician’s severity score 

-the highest accuracy was for the fine KNN model for elbow 
rigidity (100%), wrist rigidity (95%), bradykinesia (92.5%), 

kinetic tremor (87.3%), rest tremor (87.8%) 
-for postural tremor, the highest accuracy was for linear SVM 

(82.9%) 
 

Chang et al. (2022) Cognition ML type: Nomogram; Measure-
ment method: MocA, MMSE, 

HAMA, HAMD 

ROC: 0.98, AUC:0.987 
C-index:0.98; The nomogram effectively predicted the chance 

of substantial cognitive enhancement one year after STN-
DBS in PD patients 

Habets et al. (2020) UPDRS part I-IV, H&Y 
scores, LEDD, and neuro-
psychological measures 

evaluating executive func-
tion (in particular verbal 
fluency (semantic and 

lexical) and response inhibi-
tion). 

ML type: multivariate logistic 
regression; Measurement method: 
UPDRS I-IV scores, H&Y scale, 

LEDD , category fluency test, 
verbal fluency test, interference 
score of the Stroop Color Word 

test. 

Accuracy: 0.78, Sensitivity: 0.80, Specificity: 0.76, 
AUC=0.79 (SD=0.08), PPV=0.63, NPV=0.88; These results 
support the proof-of-concept that machine learning can pre-
dict individual motor outcomes after STN DBS for PD using 

preoperative clinical variables. 
 

Sabo et al. (2023) Gait improvement ML type: Spatial-temporal graph  
CNN; Measurement method: 

MDS-UPDRS-gait scores, Video 
recording 

Although the vision-derived model, developed using Parkin-
sonian gait data, failed to accurately predict MDS-UPDRS-

gait scores in a different cohort of PD patients, it nevertheless 
captured weak but significant proportional fluctuations asso-

ciated with medication and DBS interventions. 
Suppa et al. (2023) Voice impairment ML type: SVM, ANN; Measure-

ment method: Voice recordings, 
UPDRS-III sub-item voice 

From a clinical perspective, individuals with STN-DBS ex-
hibited more severe vocal disturbances than those managed 
with oral pharmacotherapy. Using machine learning-based 
analysis, it was possible to distinguish the vocal patterns of 
the DBS group from those receiving medication with high 

objectivity and precision 
Watt et al. (2024) Freezing of gait ML type: KNN, Naïve Bayes, 

Random Forest, SVM; Measure-
ment method: MDS-UPDRS III, 
Wearing device, Video recording 

Machine learning algorithms show high effectiveness in 
distinguishing individuals with advanced PD as freezers or 
non-freezers using Stand-and-walk trials performed in the 

absence of both pharmacological treatment and  active stimu-
lation. 

Yohanandan et al. 
(2016) 

Tremor ML type: RF, Multilayer percep-
tron, SVM, DT, Bayesian net-

work, radial basis network, Naïve 
Bayes; Measurement method: 
BTRS, Wearing device, Video 

recording 

This study shows that the RF was the most accurate model 
(κw = 0.81) at transforming tremor information into BTRS 

ratings. 

MDS-UPDRS, movement disorder society-Unified Parkinson's Disease Rating Scale; SVM, support vector machine; STN-DBS, subthalamic nu-
clei-deep brain stimulation; LEDD, levodopa equivalent daily dosage; BTRS, Bain-findley tremor rating scale; LASSO, ; KNN, K-Nearest Neigh-
bors; PD, parkinsonian disease; DT, decision tree; RF, Random forest; MMSE,  Mini-Mental State Examination ;Y, year; H & Y, Hoehn and Yahr 
Scale; ANN, artificial neural network; CNN, convolutional neural network; HAMA, Hamilton anxiety; HAMD, Hamilton depression; MocA, Mon-
treal Cognitive Assessment; QUIP, Questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease; DKEF, Delis-Kaplan Executive 
Function; LASSO, Least Absolute Shrinkage and Selection Operator 
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revealed similar performance in classification. 
In contrast, Sabo et al. (27) used a spatial-temporal 

graph convolutional network (ST-GCN) model trained on 
video recordings to predict gait scores in another group of 
PD patients. The model could not reliably predict MDS-

UPDRS gait scores, but it successfully detected measura-
ble changes in response following both medication and 
DBS. The observed discrepancies can be explained by 
heterogeneity in data acquisition methods; Watt et al. (26) 
used wearable sensors, while Sabo et al. (27) relied on 

 
 
Figure 2. Quality assessment of included studies (QUADAS-2) 
 

 
 
Figure 3. Detailed QUADAS-2 risk of bias and applicability assessment for each included study. 
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video-based analysis. 
 
Predicting DBS outcomes 
Only a subset of the included studies directly modeled 

postoperative DBS-related outcomes using preoperative 
patient-level variables. Habets et al. (17) used a multivari-
able logistic regression approach based on preoperative 
clinical and neuropsychological variables and reported an 
accuracy of 0.78 with an AUC of 0.79 (PPV 0.63; NPV 
0.88) for predicting postoperative outcomes. Chang et al. 
(29) developed a nomogram model to predict postopera-
tive cognitive outcome and reported high discrimination 
on ROC-based metrics (ROC 0.98; AUC 0.987; C-index 
0.98). Alhourani et al. (28) investigated postoperative ver-
bal fluency outcomes using multiple regression ML ap-
proaches (SVR, LASSO, extra-trees, KNN), where pre-
operative cognitive and demographic measures were iden-
tified as relevant predictors. However, performance met-
rics were not consistently reported. Overall, while these 
findings suggest potential for preoperative prediction, the 
evidence remains preliminary due to limited reporting 
consistency across outcomes and model evaluation, and 
the lack of external validation in the included predictive 
studies.  

 
Discussion 
Several prior systematic reviews have explored the ap-

plication of AI in managing patients with PD. They ex-
plore multiple key aspects, from identifying clinical symp-
toms and tracking disease progression to optimizing 
treatment effectiveness by adjusting stimulation parame-
ters. 

Huang et al. (30) executed a systematic review examin-
ing the use of wearable sensors in combination with ML. 
The goal of this work was to detect freezing of gait and 
predict fall risk in individuals diagnosed with PD. This 
study revealed that these technologies effectively identify 
freezing of gait episodes and predict fall risk with notable 
efficacy. In Addition, Sun et al. (31) investigated the use 
of ML in predicting cognitive impairment in PD following 
DBS in a systematic review and meta-analysis. The study 
considered various clinical parameters, including the 
MMSE, Montreal Cognitive Assessment (MOCA), age, 
sex, disease duration, and imaging data. The study demon-
strated that among the ML models, SVM achieved the 
highest sensitivity (83%), while artificial neural networks 
(ANN) showed the highest specificity (93%). 

A review by Oliveria et al. (32) suggested that ML can 
help create a personalized closed-loop DBS system by 
analyzing different electrophysiological biomarkers, 
thereby addressing the symptoms of individual PD pa-
tients. In this systematic review, our aim was to evaluate 
how effective ML algorithms are in classifying patients 
and their symptoms, and predicting how patients will re-
spond to DBS and forecasting the likelihood of adverse 
events following DBS based on their preoperative clinical 
profiles. We excluded studies that used imaging parame-
ters for assessments and focused instead on research 
where ML models relied on clinical symptoms. This ap-

proach helps make the study's results more clinically fea-
sible. 

Previous narrative reviews, such as Watts et al. (33), 
have provided a broad overview of ML applications 
across multiple aspects of DBS in PD, including candidate 
selection, programming optimization, surgical targeting, 
and mechanistic insights. While these reviews highlight 
the interdisciplinary potential of ML in DBS, they did not 
perform a structured quality assessment and were limited 
to studies published up to 2020. In contrast, our systematic 
review focuses specifically on patient or symptoms classi-
fication and clinically relevant predictors of postoperative 
outcomes, applies formal risk of bias evaluation, and in-
corporates the most recent literature up to 2024, thereby 
providing a more targeted and up-to-date synthesis. 

Recent studies have suggested that ML may support 
DBS-related decision-making; however, it is important to 
distinguish between models using preoperative clinical or 
wearable features and imaging-driven approaches that rely 
on neuroimaging data and, in some cases, postoperative 
electrode localization. Because these approaches address 
different tasks and use different input modalities, their 
reported performance is not directly comparable. Within 
the studies reviewed, performance ranged from symptom-
severity classification using sensor-derived features (with 
accuracies reported up to 90.9%) (20) to preoperative clin-
ical prediction of postoperative motor response (78% ac-
curacy for identifying weak responders after STN-DBS) 
(17). By contrast, imaging-based approaches that fall out-
side our eligibility criteria have reported accuracies such 
as 62.5% utilizing patient-specific 3D point clouds gener-
ated from preoperative MRI and postoperative CT (34) 
and 88% using fMRI (35). These findings are promising, 
but should be interpreted cautiously given differences in 
outcomes, inputs, and evaluation protocols. Therefore, we 
present them here only as context and not as part of the 
systematic synthesis (34, 35). Accordingly, to avoid con-
flating fundamentally different ML tasks and data modali-
ties, the remainder of this Discussion focuses on evidence 
that aligns with our eligibility criteria and separates symp-
tom classification from postoperative outcome prediction. 

 
Motor response 
Strong responsiveness to DBS in PD patients, as indi-

cated by symptom reduction, is associated with better 
levodopa responsiveness, lower baseline tremor severity, 
and a younger age (36). However, the strength and con-
sistency of these associations remain controversial (36-
39). ML effectively identifies patterns critical for surgical 
decision-making and is used to optimize DBS program-
ming and electrode placement (40, 41). 

 
Speech 
Patients with PD exhibit a spectrum of voice disorders, 

typically including hypophonia, monoloudness, and 
monopitch, as well as hypophonic and hypotonic articula-
tion, which together are referred to as hypokinetic dysar-
thria (42, 43). Despite being a well-established therapy for 
advanced PD, the influence of STN-DBS on axial symp-
toms, such as vocal impairments, remains poorly defined 
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(44-46). Following STN-DBS, the incidence of speech 
disturbances has been documented to range from 1% at six 
months to as high as 70% by three years of follow-up (36, 
45, 47). 

Several mechanisms have been proposed to explain the 
development of dysarthria in individuals with PD follow-
ing STN-DBS. First, a decrease in the levodopa equivalent 
daily dosage (LEDD) may negatively impact speech pro-
duction. Second, antidromic activation of the hyper-direct 
pathway may lead to aberrant activation of cortical re-
gions, thereby contributing to phenomena such as stutter-
ing and spastic speech patterns (48, 49). Third, stimulation 
may extend to adjacent structures, such as the corticobulb-
ar and corticospinal tracts, further disrupting motor con-
trol of speech (50-52). ML methodologies offer valuable 
tools for identifying vocal abnormalities associated with 
neurological conditions, including PD (25, 43, 50, 53). 

Suppa et al. (25) report that SVM ML can accurately 
differentiate the vocal characteristics of patients treated 
with STN-DBS from those managed with oral medication, 
using post-stimulation voice deterioration as the key dis-
criminative factor. 

 
Verbal fluency 
Verbal fluency (VF) relies on executive functions be-

yond verbal skills (52), including working memory (53), 
cognitive flexibility, and response inhibition (54). These 
functions can be impaired initially in PD (55) and may 
also be affected by DBS. Thus, understanding pre-existing 
executive function deficits in patients is crucial for pre-
dicting DBS-related changes in VF (28). 

Alhourani et al. (28) investigated three types of VF, in-
cluding letter, semantic, and action fluency, employing an 
ML approach to assess neuropsychological variables that 
predict VF deterioration following DBS. LASSO and 
SVR were the most effective predictive methods. Howev-
er, the simple regression model also provided comparable 
variance, offering a more straightforward option for clini-
cal predictions. Across all three predictive models, greater 
baseline levels of fluency, digit span performance, educa-
tion, and Mini-Mental State Examination scores were 
linked to superior fluency outcomes following surgery.  

 
Freezing of gait 
Gait disturbance can manifest in the early stages of PD, 

with research indicating that subtle alterations may be 
detectable during the prodromal phase (26, 56, 57). In 
patients with PD, common gait abnormalities include di-
minished stride length, reduced walking velocity, absence 
of arm swing, and difficulties with multi-step turning (58, 
59). 

Freezing of gait (FOG) episodes can either be triggered 
by specific actions or occur paroxysmally, significantly 
elevating the likelihood of falling and negatively impact-
ing patients' quality of life (60, 61). The majority of re-
search on FOG utilizes ML approaches to detect and fore-
cast freezing episodes based on signals captured by wear-
able sensors (62). 

Watt et al. (26) studied PD patients undergoing STN-
DBS who exhibited freezing of gait when medication and 

DBS were both discontinued. A random forest model 
identifies ten key predictive features, encompassing spa-
tial parameters such as foot strike angle, trunk and lumbar 
range of motion, stride length, and toe-off angle, along 
with temporal parameters such as gait speed and lateral 
step variability. Various ML models accurately classified 
patients based on instrumented stand and walk trials, in-
cluding KNN, naïve Bayes, random forest, logistic regres-
sion, and SVM. 

 
Cognitive decline 
Along with the characteristic motor symptoms, PD often 

includes non-motor features such as cognitive impairment 
and cognitive decline (63, 64). Mild cognitive impairment 
affects approximately 25% of PD patients, with dementia 
impacting 20-70% (65, 66). Although DBS primarily tar-
gets motor symptoms, it may adversely affect cognitive 
domains, including memory, visual function, and execu-
tive performance (67, 68). 

Chang et al. (29) developed a nomogram model to as-
sess postoperative cognitive improvement in 103 PD pa-
tients after one year of STN-DBS, using both univariate 
and multivariate logistic regression. The multivariate 
analysis revealed four key predictors of cognitive im-
provement: years of education, MoCA scores, MMSE 
scores, and UPDRS part III. The resulting model demon-
strated strong predictive power, with a concordance index 
(C-index) of 0.985 and a sensitivity of 98% on the receiv-
er operating characteristic curve.  

The effectiveness of ML models in predicting clinical 
outcomes following DBS shows promising results. Chang 
et al. (29) achieved an impressive AUC (area under the 
curve) of 0.987 and a C-index of 0.98, demonstrating 
strong predictive power. On the other hand, Habets et al. 
(17) reported a more modest AUC of 0.79, with a PPV 
(positive predictive value) of 0.63 and an NPV (negative 
predictive value) of 0.88, indicating that while the models 
are still valuable, there is room for improvement in predic-
tion accuracy. 

 
Limitations 
This work offers the first detailed assessment of ML ap-

plications for predicting clinical outcomes following DBS 
in PD. However, several limitations should be acknowl-
edged. The number of eligible studies was limited, and 
most were single-center and retrospective in design. It 
should also be noted that many existing ML studies in 
DBS focus on imaging-based predictors, which were out-
side the scope of our research question. By restricting in-
clusion to clinical and symptom-based predictors, only 
eight studies met the eligibility criteria, further limiting 
the generalizability of our conclusions. External validation 
was rarely performed, limiting the clinical applicability of 
these results. 

Studies varied considerably in their choice of specific 
symptoms as input parameters, and outcome measures 
were inconsistently reported. 

Furthermore, methodologies for evaluating preoperative 
symptoms varied across studies, making it difficult for 
reviewers to compare them. Further research should prior-
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itize large-scale, multicenter prospective studies to identi-
fy the most reliable symptom-based predictors for specific 
outcomes and to determine the most effective ML models 
for these predictions. Additionally, there is a lack of re-
search comparing the efficacy of ML models in predicting 
symptom changes following DBS versus traditional oral 
medications. Another limitation is that we did not apply 
ML-specific risk-of-bias tools such as PROBAST or 
QUADAS-AI, and instead we adapted QUADAS-2 as a 
structured framework, which may not capture all sources 
of bias unique to prediction modeling studies. This 
knowledge gap underscores the need for further investiga-
tions in this field. 

 
Conclusion 
The role of ML techniques in predicting clinical out-

comes for PD patients who have undergone DBS has been 
increasingly investigated in recent studies. These models 
might help clinicians select patients, facilitate consulta-
tions, and design individualized treatment plans. These 
results should be considered carefully, as the available 
studies are limited by small sample sizes, predominantly 
retrospective designs, and substantial methodological het-
erogeneity. Future validation through large, multicenter 
prospective investigations is required to confirm the relia-
bility of ML models and to support their safe and practical 
integration into routine clinical practice. 
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